Disaster Monitoring Constellation Experiment

Cisco.com

SSTL, NASA & Cisco

IP in Space

UK-DMC LEO Bird

- 30 Meter IR Mission
 - Forrest Fires
 - Volcanic Activity
- 6 S/C Constellation
- Short Turn Around
- Integration Completed

Satellite Sub Assembly

UK-DMC Satellite

Nigerian DMC Satellite

Router Payload

- Modified Cisco 3251 (MAR)
- Replaced all wet capacitors
- Removed all plastic connectors
- Tests include
 - 10G shock test
 - Thermal vacuum test (Space test)
 - Thermal dissipation
- Operational 4-6 sunlight passes/day

Cisco 3200 Series Mobile Access Router System View

Cisco.com

Mobile Access Router Card (MARC)

High performance processor, One 10/100 Ethernet, one console, one aux port, fixed memory

Mobile Interface Cards (MICs)

Serial MIC: 4 sync/async serial

FES MIC: 10/100 Ethernet, with 4 port switch

 3200 Series Mobile Access Router configuration limits

Limit 3 MIC's per router, mix and match

1 Mobile Access Card mandatory per router
Limit 1 FESMIC per router

The stack shown above has 8 Serial interfaces, 1 FE port +4 FE Switch ports, 1 Console, 1 Aux

Serial Mobile Interface Card (SMIC)

Cisco.com

- 4 Port Serial interfaces
- All existing 12:1 signals supported
- Each interface supports up to 2Mbps Asynch/Synch serial
- Typically used for a WAN interface to an existing wireless/satellite network
- Headers on board for external connection

No on-board connectors See slide 19 for more details

Fast Ethernet Switch MIC (FESMIC)

- 1 10/100 Ethernet with 4 port switch with VLAN 802.1q and 802.1p supported
- Limit one FE MIC per mobile router router (3200 Series MAR)
- No in line power provided
- ISL not supported
- Headers on board for external connection
 RJ45's are not located on board

Mobile Access Router Card (MARC) Overview

- MPC8250, running at 200MHz CPU core, 133MHz CPM core and 66MHz Motorola 60x Bus
- 32-bit PCI bus version 2.1 running at 33MHz, connects to Cisco MICs
- 128Mbyte 64 bit, Unbuffered, Synchronous DRAM
- 32Mbyte 16 bit of Flash memory
- Single 10/100 Fast Ethernet, full-duplex 100 Base-T, with auto negotiation
- Single Console, with modem flow control
- Single Asynchronous, RS-232 serial, for GPS/AUX devices
- Integrated host-to-PCI bridge (PCI bus version 2.1)

Cisco 3251 Mobile Access Router

Custom interface board

- Integrates MAR to CAN
- Provides Serial interface to payload
- Provides power
- Out of band connectivity

Custom "Ribbon" cable

- Standard ribbon cable wouldn't work
- Trick was to determine length

Completed Ribbon Cable

Satellite Chassis

- Each shelf provides different payload function
 - Computing
 - Navigation
 - Monitoring

DMC Constellation Phase 1 Launch Details

- Launch July 28, 2003
- Russian Supplied Cosmos
 3-M Rocket
- Launch Site PLESETSK
 Space Centre
- NASA Funded Ground Station for Cisco/NASA Testing and Operations

DMC Satellite Operational Objectives

- Survivability of COTS Products in Space
- Operational Data Path for Both Mission Data and System House keeping
- IP Routing & Performance Characteristics
- Mobile IP Testing
- Possible Software Upgrades ?

Spacecraft Network Attributes to be Tested

- Failure Management
 - Detection
 - Isolation
 - Recovery
 - Notification
- Configuration Management
 - Network
 - User / asset profiles
 - Hardware inventory
 - Software versions / updates
 - Routing tables
- Performance Management
 - Data collection
 - Resource planning
 - Service monitoring
- Resource Management
 - Link allocation
 - Bandwidth allocation
 - Dynamic scheduling
 - User prioritization
 - QOS requirements (traffic shaping, etc...)

- Security Management
 - User authentication
 - Data access
 - Tasking control
 - Payload control
 - Platform control
 - Key distribution
 - Data/command interception
 - Data/command interruption
 - Data/command replay attack
 - Masquerade attack
 - Inference (unencrypted IP header issue)
 - Mobile IP routing
- Contention Management
 - Multiple PI's on same instrument
 - Multiple instruments on same spacecraft
 - Multiple spacecraft in view of single GS
 - Multiple GS in view of single spacecraft
- Accounting Management
 - Billing / fairness policies
 - Mobile IP: multiple spacecraft host registration

What Do We Hope to Demonstrate?

Cisco.com

The viability of taking a purely COTS network product and using it in space

Space modifications

Qualification

 Quantified performance of the device under actual space conditions (vacuum, radiation, etc...)

Power consumption

Voltage

Temperature

- Detection of and recovery from unexpected device operations (reboot on orbit)
- Update / revision of device configuration on orbit
- Network operations on orbit

Mobile IP NTP

Mobile Router Real time TCP/IP session

RIP FTP
ARP/RARP SNMP
MDP HTTP
UDP PHP
SSH SCP

Pre-flight modeling / performance comparison

STK OPNET, Berkley NS

What Do We Hope to Demonstrate?

Cisco.com

Additional mission operations techniques

Secure field data dissemination (multiple hops)

Use of commercial assets

Predictive routing / mobile connection (on the fly)

Access on demand, NAPSTER-like data interface

Data mining

Operations from remote locations

Protocol evaluation

Compression technique performance characterization

Performance characterization with sub-optimal links

Performance characterization with overloaded on-board network

Applied spacecraft network security research in the following areas:

User authentication techniques

Data encryption, Unauthorized user detection and mitigation

Key management, Performance characterization of security implementations

Mobile IP / Router security schemes

Virtual private network techniques

Command / data interception, interruption, modification, or replay detection and mitigation

Packet header inference mitigation techniques

System integrity tests (penetration testing)

Protocol Comparison Criteria

- Latency tolerance
- Data time correlation and synchronization support
- Link error tolerance
- Throughput versus delay / bit error rate
- Packet overhead (header versus payload)
- Bandwidth efficiency
- Interoperability with existing terrestrial systems (not simple IP wrapping)
- Flexibility to accommodate future protocol changes

- Time line savings
- QOS support and functionality
- Service type support
- Risk mitigation functionality
- Disaster recovery functionality
- End user application awareness & support capability
- Variable, on the fly, packet size support
- Multicast support
- Mobility support (overhead, dynamic registration, ...)
- Life cycle cost savings
- Multiple level access control
- Multi-domain, dynamic network security and encryption

Virtual Mission Operations Survivable Satellite Operations

Cisco.com Goals: Fly as you tested 1. **Satellite** 2. "Normalization of Space" (On Orbit) 3. **Common ground infrastructure** COTS **Generic VMO Network** Interface: Interface **Mission Unique Parameters Mobile Ground Station COTS** (Anywhere) Network Interface An Internet Commercial, DoD, or **NASA Ground Station Primary Virtual** Minimally Staffed, (Anywhere) **Mission Operations** Geographically Disbursed, **Center (Anywhere)** Mirrored, Virtual Mission **Operations Centers** (Anywhere)

Other Mobile IP activities

- MIL-STD-1553 to IP interface with Cisco 3251 and web GUI
- Rate Based Satellite Control Protocol in Cisco IOS
- Demo with USCG and NASA GRC for Cisco 3251/Globalstar testing
- Use of the NASA GRC van for Mobile IP demo
- NASA GRC NRA for IP Based C&DH system using Cisco 3251
- SDO Gig E NIC Card for S/C proposal?

Summary

- A transformation in satellite communication services moving toward internet-like connectivity is underway
- Use of Internet Protocol and standards in space offer significant advantages:
 - Reduced cost and schedule to develop future spacecraft.
 - Seamless interoperability of future satellites with existing terrestrial networks.
 - Survivable, remote, "virtual" mission operations / satellite command and control
- Development of RAD-hard network components, qualification, and flight testing are all critical to the deployment of IP-compliant systems in space.
- The use of Internet Protocols in space introduces new challenges, particularly in the area of network security.
- The commercial networking industry offers opportunity to leverage existing terrestrial standards as baseline for future space-based internetworking.

Contact information

Cisco.com

Cisco Global Defense & Space Group Space Initiatives Program

URL: www.cisco.com

Contact: Hugh Arif

Phone: 216-643-2511

E-mail: harif@cisco.com